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Surprises on the Way from One- to Two-
Dimensional Quantum Magnets: The Ladder Materials

Elbio Dagotto and T. M. Rice

To make the transition from the quasi-long-range order in a chain of antiferromagnetically
coupled S = 1/2 spins to the true long-range order that occurs in a plane, one can
assemble chains to make ladders of increasing width. Surprisingly, this crossover be-
tween one and two dimensions is not at all smooth. Ladders with an even number of legs
have purely short-range magnetic order and a finite energy gap to all magnetic excitations.
Predictions of this ground state have now been verified experimentally. Holes doped into
these ladders are predicted to pair and possibly superconduct.

The unexpected discovery of high-temper-
ature superconductivity (1) in lightly doped
antiferromagnets has sparked renewed in-
terest in low-dimensional quantum mag-
nets. The parent cuprate insulators are now
considered the best examples of planar spin-
1/2 antiferromagnets with isotropic and
predominantly nearest-neighbor coupling.
They show simple long-range antiferromag-
netic (AF) order at low temperatures in
agreement with theory, which predicts an
ordered ground state for the S = 1/2 AF
Heisenberg model on a two-dimensional
(2D) square lattice (2). The 1D AF Heisen-
berg chain is also well understood. A fa-
mous exact solution found by Bethe many
years ago (3) showed that quantum fluctu-
ations prevent true long-range AF order,
giving instead a slow decay of the spin
correlations at a rate that varies essentially
inversely with the separation between the
spins. Therefore, it came as a great surprise
when numerical calculations found that the
crossover from chains to square lattices,
obtained by assembling chains one next to
the other to form "ladders" of increasing
width, was far from smooth. Although there
is no apparent source of frustration, quan-
tum effects lead to a dramatic dependence
on the width of the ladder (given by the
number of coupled chains).

Ladders made from an even number of
legs have spin-liquid ground states, so called
because of their purely short-range spin cor-
relation. An exponential decay of the spin-
spin correlation is produced by a finite spin
gap, namely, a finite energy gap to the
lowest S = 1 excitation in the infinite
ladder. These even-leg ladders may there-
fore be regarded as realizations of the
unique, coherent singlet ground state pro-
posed some years ago by Anderson in the

context of 2D S = 1/2 AF Heisenberg sys-
tems (the so-called resonance valence bond
state) (4).
A ladder with an odd number of legs

behaves quite differently and displays prop-
erties similar to those of single chains at low
energies, namely gapless spin excitations
and a power-law falloff of the spin-spin
correlations, apart from logarithmic correc-
tions. This dramatic difference between
even-leg and odd-leg ladders predicted by
theory has now been confirmed experimen-
tally in a variety of systems.

Two-leg S = 1/2 ladders are found in
vanadyl pyrophosphate (VO)2P207 and in
some cuprates like SrCu203 (Fig. 1) (m-leg
ladder denotes m coupled spin-1/2 chains).
Measurements of the spin susceptibility
show that it vanishes exponentially at low
temperature, a clear sign of a spin gap.
Neutron scattering and muon spin reso-
nance measurements are consistent with
short-range spin order in the 2-leg ladders,
although as we stressed before, they are
unfrustrated spin systems that classically
should order without a spin gap. Further
nuclear magnetic resonance (NMR) mea-
surements have confirmed the large spin
gap in the excitation spectrum.

Three-leg ladders (Sr2Cu305) by con-
trast show longer range spin correlations
and even true long-range order at low tem-
perature because of weak interladder forces.
There is excellent agreement between the-
ory and experiment, confirming that there
is a dramatic difference between even- and
odd-leg S = 1/2 Heisenberg AF ladders.

Doped chains have long fascinated the-
orists because they form unusual quantum
liquids, so-called Luttinger liquids, with
many unique properties (5). Although dop-
ing experiments in ladder compounds are
just starting, extensive theoretical studies
have been made of doped ladders. Again, a
clear difference between even- and odd-leg
ladders is predicted. Even-leg ladders are
especially interesting because a variety of
techniques reveal hole pairing in a relative

"d-wave" state, which places them in a
different universality class of 1D systems
than the Luttinger liquids found in single
chains and odd-leg ladders.

Theoretical Aspects of the S =
1/2 Heisenberg Model on Ladders

The properties of S = 1/2 Heisenberg AF
models defined on 1D chains or on 2D
square lattices are well-known. The model
is defined by the Hamiltonian

H = J£Si * Si
(i)j)

where i is a vector labeling lattice sites
where spin-1/2 operators Si are located, (i, j)
denotes nearest-neighbor sites, and J (> 0)
is the AF exchange coupling that provides
the energy scale in the problem. This scale
is material dependent and ranges from a few
millielectron volts to, in the case of high-
temperature superconductors, about 0.1 eV.
On 2D square lattices, the Heisenberg mod-
el has a ground state with long-range AF
order, whereas in 1D chains, the spin-spin
correlation decays slowly to zero as a power
law. Neither system has a spin gap, that is,
there is no cost in energy to create an
excitation with S = 1.

The field of ladder systems started when
Dagotto et al. (6) [see also (7, 8)] found
evidence that 2-leg ladders have a finite
spin gap, because a finite energy is needed
to create a S = 1 excitation. They started
with the simple limit obtained by general-
izing Eq. 1 so that the exchange coupling
along the rungs of a 2-leg ladder (denoted
by J') is much larger than the coupling J
along the chains. This idealization has the
advantage that rungs interact only weakly
with each other, and the dominant config-
uration in the ground state is the product
state with the spins on each rung forming a
spin singlet. The energy in this limit is
approximately Egs = -3/4J'N, where N is
the number of rungs and -3/4J' is the
energy of each rung singlet state T)s =
(It4I) - IIt))/IV2 ( t and 4 are the
spin-up and spin-down eigenvectors of the
spin operator in the z direction). The
ground state has a total spin S = 0 because
each rung is in a spin singlet. To produce a
S = 1 excitation, a rung singlet must be
promoted to a S = 1 triplet A)T = [ tT),
( 1 I, ) + I T ))/V, 1I,I)]. An isolated
rung-triplet has an energy J' above the rung
singlet. The coupling along the chains cre-
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2)    Emergent SO(4) symmetry in the 
one-dimensional Hubbard model.

Up to logarithmic corrections: 

Dimer-Dimer  correlations are in  predefined observables.   
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For an explicit calculation see  supplemental material of 
T. Sato, M. Hohenadler, T, Grover, J. McGreevy, and F. F. Assaad, Topological terms on topological defects: a quantum Monte Carlo study, arXiv:2005.08996 (2020).

Note:    Field  theory   is  O(4)   non-linear  sigma model in 1+1  dimensions with WZW  term.

ALF  simulations of O(5)  non-linear sigma model in 2+1 d with WZW term à Z. Wang et al.  Phys. Rev. Lett. 126 (2021), 045701
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3)   a)  SU(N)  Hubbard model  on the one-dimensional chain.    Show that the ground state at N = 4 is dimerized. 

b)  Can you write a program for the SU(N) quantum antiferromagnetic in the self-adjoint antisymmetric          
representation?    (See  ALF  2.0  documentation,  Section on  the  SU(N)   Kondo lattice. )
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b)  Can you write a program for the SU(N) quantum antiferromagnetic in the self-adjoint antisymmetric          
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4)  Dynamics of  one-dimensional  Hubbard chains.   Understand how to use Maxent ( see Documentation Chapter 10) 
to produce: 
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5) Correlation  effects in 
Chern bands.

No sign problem for negative U,
and arbitrary filling. 

For positive U, no sign problem
only at half-filling (            ) 
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Superconductivity, pseudogap, and phase separation in topological flat bands
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Superconductivity is a macroscopic quantum phenomenon that requires electron pairs to delocalize over large
distances. A long-standing question is whether superconductivity can exist even if the electrons’ kinetic energy
is completely quenched, as is the case in a flat band. This is fundamentally a nonperturbative problem, since
the interaction energy scale is the only relevant energy scale, and hence it requires going beyond the traditional
Bardeen-Cooper-Schrieffer theory of superconductivity, which is perturbative by nature. In this work, we study
a two-dimensional model of an isolated narrow band at partial filling with local attractive interactions, using
numerically exact quantum Monte Carlo calculations. We focus on the case where the flat bands are topologically
nontrivial, and hence the single-particle wave functions that span these bands cannot be completely spatially
localized. Our calculations unambiguously demonstrate that the ground state is a superconductor; strikingly, the
critical temperature scales nearly linearly with the interaction strength. Above the superconducting transition
temperature, we find a broad pseudogap regime that exhibits strong pairing fluctuations and a tendency towards
electronic phase separation. Introducing a small nearest-neighbor attraction suppresses superconductivity en-
tirely and drives the system to phase separate. We discuss the possible relevance of superconductivity in this
unusual regime to the physics of flat band moiré materials.

DOI: 10.1103/PhysRevB.102.201112

Introduction. What is the highest attainable superconduct-
ing temperature Tc in a given system? This decades-old
question has become pressing with the discovery of su-
perconductivity in two-dimensional materials with moiré
superlattices [1–5], which offer unprecedented control over
the electronic band structure and density. It is natural to ask
what sets Tc in these systems, as a step towards optimizing it
further. In general, Tc is limited by two different energy scales:
the pairing scale associated with Cooper pair formation, and
the phase ordering (or phase coherence) scale, set by the
superconducting phase stiffness [6]. Optimizing one energy
scale often comes at the expense of the other. For exam-
ple, in the paradigmatic attractive Hubbard model, increasing
the interaction strength beyond a certain limit decreases the
phase ordering temperature; the optimal Tc is achieved when
the attractive interaction U and the electronic bandwidth W
are comparable, and the maximum attainable Tc is about
0.02W [7,8].

Intriguingly, it has been suggested that in certain cases,
superconductivity can survive even in the limit where the
active electronic bands become perfectly flat [9–13]. As long
as the interaction strength is much smaller than the gap be-
tween the active narrow band and the other bands, one expects
Tc to be proportional to U , which is effectively the only energy
scale in the problem. The phase stiffness need not vanish even
as the bandwidth vanishes, as long as the single-particle states
cannot all be tightly localized [14,15], as in, e.g., topological
bands. Note that in this case, upon projecting the problem to
the active flat bands, the recently proven upper bound on the

*erez.berg@weizmann.ac.il
†debanjanchowdhury@cornell.edu

phase stiffness [16] in terms of the bandwidth of the isolated
band does not apply, unless contributions from the remote
bands are also included [17]. Interestingly, in several moiré
systems where superconductivity is found, the active bands
have been argued to have a topological character [18–24].

Within Bardeen-Cooper-Schrieffer (BCS) mean-field the-
ory, lower bounds on the phase stiffness in a topological band
have been proven [25–28]; however, in the limit of a flat
band, the problem is inherently strongly coupled and BCS
mean-field theory is generally uncontrolled [29]. In particular,
all sorts of competing electronic orders may arise (such as
charge order and electronic phase separation), and suppress
the superconducting Tc. While studies of superconductivity in
flat bands have been performed [25,30–33], superconductivity
with Tc ∝ U has never been rigorously demonstrated in a
solvable model. In addition, the nature of the normal (non-
superconducting) state out of which such a superconductor
may arise has not been clarified.

In order to address these fundamental questions, we study
a sign-problem free lattice electronic model [Fig. 1(a)] with
partially filled, flat bands [Fig. 1(b)] with Chern numbers
C = ±1 in the regime of strong attractive interactions using
the numerically exact, unbiased determinant quantum Monte
Carlo method [34,35]. It has recently been pointed out that
the isolated flat bands in magic-angle twisted bilayer graphene
can be decomposed into a total of four C = 1 and four C = −1
bands [36]. Moreover, in a particular solvable limit [37], these
Chern bands are tied to a particular sublattice polarization.
While the model we study here hosts only two flat C = ±1
bands and does not directly describe the low-energy physics
of any particular material, our study serves as a proof-of-
principle for addressing many of the questions raised above,

2469-9950/2020/102(20)/201112(6) 201112-1 ©2020 American Physical Society



5) Correlation  effects in 
Chern bands.

No sign problem for negative U,
and arbitrary filling. 

For positive U, no sign problem
only at half-filling (            ) 

6) Edge  physics.
Consider the above model with open  boundary 
conditions in the y-direction.   Along the edge 
you should   be able to  investigate the physics 
of a  helical  Luttinger liquid.   
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Correlation Effects in Quantum Spin-Hall Insulators: A Quantum Monte Carlo Study

M. Hohenadler, T. C. Lang, and F. F. Assaad
Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

(Received 29 November 2010; revised manuscript received 3 February 2011; published 7 March 2011)

We consider the Kane-Mele model supplemented by a Hubbard U term. The phase diagram is mapped

out using projective auxiliary field quantum Monte Carlo simulations. The quantum spin liquid of the

Hubbard model is robust against weak spin-orbit interaction, and is not adiabatically connected to the

spin-Hall insulating state. Beyond a critical value of U >Uc both states are unstable toward magnetic

ordering. In the quantum spin-Hall state we study the spin, charge, and single-particle dynamics of the

helical Luttinger liquid by retaining the Hubbard interaction only on a ribbon edge. The Hubbard

interaction greatly suppresses charge currents along the edge and promotes edge magnetism but leaves

the single-particle signatures of the helical liquid intact.

DOI: 10.1103/PhysRevLett.106.100403 PACS numbers: 75.10.!b, 03.65.Vf, 71.10.Pm, 71.30.+h

The Z2 topological band insulator (TBI) [1] arises from
spin-orbit (SO) coupling and is invariant under time rever-
sal symmetry. The bulk is insulating and the edge states,
coined helical Luttinger liquids, show gapless spin and
charge excitations. An explicit realization is given by the
Kane-Mele (KM) Hamiltonian [2], which reduces to two
separate Haldane models [3], with opposite signs of the
Hall conductivity in the two spin sectors. Time reversal
symmetry protects the edge states against potential scat-
tering and weak electron-electron interactions [4,5], and
allows for experimental realizations [6,7]. Previous work
on correlation effects has essentially followed two routes:
interaction driven topological insulators [8–12] or (as here)
the interplay of spin-orbit coupling and Coulomb repulsion
[13–17]. We present the first quantumMonte Carlo (QMC)
results which document (i) a quantum phase transition
between the quantum spin liquid (QSL) phase of [18]
and the TBI, (ii) the stability of the TBI against magnetic
ordering, and (iii) the role of fluctuations in the helical
edge states of the TBI.

Our starting point is the KM-Hubbard model on the
honeycomb lattice with Hamiltonian H ¼ HKM þHU,

HKM ¼ !t
X

hi;ji
cyi cj þ i!

X

hhi;jii
cyi ei;j $ !cj;

HU ¼ U

2

X

i

ðcyi ci ! 1Þ2:
(1)

The spinor cyi ¼ ðcyi;"; cyi;#Þ creates an electron in a Wannier

state at site i, hi; jimeans summation over the three nearest
neighbors j ¼ iþ "n with "n 2 f'"1;'"2;'"3g, see
Fig. 1(a), hhi; jii denotes summation over next-nearest
neighbors j ¼ iþ "n þ "m, ei;j ¼ "n ( "m=j"n ( "mj
and ! is the vector of Pauli matrices. At the particle-hole
symmetric point, this model can be investigated with a
variety of QMC algorithms without encountering the in-
famous negative sign problem. We present two sets of
simulations to extract bulk and boundary properties.

Bulk phase diagram.—For bulk simulations we use the
projective auxiliary field QMC approach. The ground state
j!0i is filtered out of a trial wave function j!Ti with
h!Tj!0i ! 0; a very good choice is the ground state of
the KM model. For an arbitrary observable, h!0jOj!0i ¼
lim"!1h!Tje!"H=2Oe!"H=2j!Ti=h!Tje!"Hj!Ti. The
absence of the negative sign problem at half filling follows
from the fact that, after a discrete Hubbard-Stratonovich
transformation of HU and subsequent integration over the
fermionic degrees of freedom, the fermionic determinants
in the up and down spin sectors are linked via complex
conjugation such that their product is positive. We employ
an SUð2Þ invariant Hubbard-Stratonovich transformation
and an imaginary time discretization of #"t ¼ 0:1.
Projection parameters "t ¼ 40 prove sufficient for con-
verged (within statistical errors) ground-state results. For
details of the algorithm, see [19].
The SO coupling reduces the SUð2Þ symmetry to a

Uð1Þ symmetry corresponding to spin rotations around
the z axis. The Hubbard interaction promotes transverse,
x-y magnetic ordering [15] which can be tracked by

λU
t

a1

a2
δδ1

δ
δ3

(a)
U

t
λ

(b)

2

FIG. 1 (color online). (a) Periodic lattice structure of the
KM-Hubbard model with nearest-neighbor hopping t, spin-orbit
coupling !, and Coulomb repulsion U. Arrows indicate the
current direction associated with the spin-orbit term for one
spin species and sublattice. (b) Effective model on a semi-infinite
ribbon with periodic boundaries in the a1 direction and Coulomb
repulsion U only at the edge sites.
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Superconductivity, pseudogap, and phase separation in topological flat bands
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Superconductivity is a macroscopic quantum phenomenon that requires electron pairs to delocalize over large
distances. A long-standing question is whether superconductivity can exist even if the electrons’ kinetic energy
is completely quenched, as is the case in a flat band. This is fundamentally a nonperturbative problem, since
the interaction energy scale is the only relevant energy scale, and hence it requires going beyond the traditional
Bardeen-Cooper-Schrieffer theory of superconductivity, which is perturbative by nature. In this work, we study
a two-dimensional model of an isolated narrow band at partial filling with local attractive interactions, using
numerically exact quantum Monte Carlo calculations. We focus on the case where the flat bands are topologically
nontrivial, and hence the single-particle wave functions that span these bands cannot be completely spatially
localized. Our calculations unambiguously demonstrate that the ground state is a superconductor; strikingly, the
critical temperature scales nearly linearly with the interaction strength. Above the superconducting transition
temperature, we find a broad pseudogap regime that exhibits strong pairing fluctuations and a tendency towards
electronic phase separation. Introducing a small nearest-neighbor attraction suppresses superconductivity en-
tirely and drives the system to phase separate. We discuss the possible relevance of superconductivity in this
unusual regime to the physics of flat band moiré materials.

DOI: 10.1103/PhysRevB.102.201112

Introduction. What is the highest attainable superconduct-
ing temperature Tc in a given system? This decades-old
question has become pressing with the discovery of su-
perconductivity in two-dimensional materials with moiré
superlattices [1–5], which offer unprecedented control over
the electronic band structure and density. It is natural to ask
what sets Tc in these systems, as a step towards optimizing it
further. In general, Tc is limited by two different energy scales:
the pairing scale associated with Cooper pair formation, and
the phase ordering (or phase coherence) scale, set by the
superconducting phase stiffness [6]. Optimizing one energy
scale often comes at the expense of the other. For exam-
ple, in the paradigmatic attractive Hubbard model, increasing
the interaction strength beyond a certain limit decreases the
phase ordering temperature; the optimal Tc is achieved when
the attractive interaction U and the electronic bandwidth W
are comparable, and the maximum attainable Tc is about
0.02W [7,8].

Intriguingly, it has been suggested that in certain cases,
superconductivity can survive even in the limit where the
active electronic bands become perfectly flat [9–13]. As long
as the interaction strength is much smaller than the gap be-
tween the active narrow band and the other bands, one expects
Tc to be proportional to U , which is effectively the only energy
scale in the problem. The phase stiffness need not vanish even
as the bandwidth vanishes, as long as the single-particle states
cannot all be tightly localized [14,15], as in, e.g., topological
bands. Note that in this case, upon projecting the problem to
the active flat bands, the recently proven upper bound on the

*erez.berg@weizmann.ac.il
†debanjanchowdhury@cornell.edu

phase stiffness [16] in terms of the bandwidth of the isolated
band does not apply, unless contributions from the remote
bands are also included [17]. Interestingly, in several moiré
systems where superconductivity is found, the active bands
have been argued to have a topological character [18–24].

Within Bardeen-Cooper-Schrieffer (BCS) mean-field the-
ory, lower bounds on the phase stiffness in a topological band
have been proven [25–28]; however, in the limit of a flat
band, the problem is inherently strongly coupled and BCS
mean-field theory is generally uncontrolled [29]. In particular,
all sorts of competing electronic orders may arise (such as
charge order and electronic phase separation), and suppress
the superconducting Tc. While studies of superconductivity in
flat bands have been performed [25,30–33], superconductivity
with Tc ∝ U has never been rigorously demonstrated in a
solvable model. In addition, the nature of the normal (non-
superconducting) state out of which such a superconductor
may arise has not been clarified.

In order to address these fundamental questions, we study
a sign-problem free lattice electronic model [Fig. 1(a)] with
partially filled, flat bands [Fig. 1(b)] with Chern numbers
C = ±1 in the regime of strong attractive interactions using
the numerically exact, unbiased determinant quantum Monte
Carlo method [34,35]. It has recently been pointed out that
the isolated flat bands in magic-angle twisted bilayer graphene
can be decomposed into a total of four C = 1 and four C = −1
bands [36]. Moreover, in a particular solvable limit [37], these
Chern bands are tied to a particular sublattice polarization.
While the model we study here hosts only two flat C = ±1
bands and does not directly describe the low-energy physics
of any particular material, our study serves as a proof-of-
principle for addressing many of the questions raised above,

2469-9950/2020/102(20)/201112(6) 201112-1 ©2020 American Physical Society



7) Sticking issues.    Consider the doped attractive  Hubbard model.    Both HS decompositions  based on    
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Mz = True in  Hubbard Hamiltonian.

Mz = False in  Hubbard Hamiltonian.

are free of the negative sign problem.     Check  autocorrelation times (see Documentation Sec. 4) for the  particle number as a function of 

doping  for large values of |U|  and  assess  which choice  the  HS transformation is more efficient. 
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8)     Investigate the  spinless t-V model on a          flux lattice.    As a function of V, you should observe a transition in the Gross-Neveu
Ising universality class to a charge density wave  state. 

9)    Consider the half-filled Kondo lattice model on the  Honeycomb lattice.  Show that  there is  direct magnetic order disorder transition
as a function of  J.   The  transition is a consequence of the competition between the RKKY and  Kondo interactions.    
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Fermion-bag inspired Hamiltonian lattice field theory
for fermionic quantum criticality
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Motivated by the fermion-bag approach, we construct a new class of Hamiltonian lattice field theories
that can help us to study fermionic quantum critical points, particularly those with four-fermion
interactions. Although these theories are constructed in discrete time with a finite temporal lattice spacing
ε, when ε → 0, conventional continuous-time Hamiltonian lattice field theories are recovered. The fermion-
bag algorithms run relatively faster when ε ¼ 1 as compared to ε → 0 but still allow us to compute
universal quantities near the quantum critical point even at such a large value of ε. As an example of this
new approach, here we study the Nf ¼ 1 Gross-Neveu chiral-Ising universality class in 2þ 1 dimensions
by calculating the critical scaling of the staggered mass order parameter. We show that we are able to study
lattice sizes up to 1002 sites when ε ¼ 1, while with comparable resources we can reach lattice sizes of only
up to 642 when ε → 0. The critical exponents obtained in both these studies match within errors.

DOI: 10.1103/PhysRevD.101.074501

I. INTRODUCTION

The effort to understand quantum critical points resulting
from fermions that do not decouple at low energies and
long distances is an exciting area of research across energy
scales. In 2þ 1 dimensions, it is well known that relativ-
istic four-fermion models containing massless Dirac fer-
mions can exhibit the presence of such critical points [1].
These four-fermion models are usually referred to as either
Gross-Neveu models [2] or Thirring models [3], depending
on the type of interaction, and have been studied exten-
sively over the years [4–14]. The study of quantum critical
points in these four-fermion models has reemerged as an
exciting area of research [15], especially due to the recent
discovery that many materials can be described by Dirac
fermions in the low-energy limit and such materials can
have new phases and quantum critical points that separate
them [16,17]. Massless fermions can even help induce new
quantum critical points and multicritical points that do not
exist in purely bosonic models [18–21]. New analytical
studies of the Gross-Neveu transitions using ϵ expansions
[22–24], large-N expansions [25,26], functional renormal-
ization group (RG) techniques [27], and the bootstrap
approach [28] have been performed recently. This progress,
combined with new solutions to fermion sign problems
[29–35] and recent advances in numerical techniques for
lattice fermions [36–40], are allowing us, in particular, to
compute various critical exponents more accurately than
before [41,42]. In some cases, we have also discovered new
and unexpected universality classes [43,44], where it is

believed that the exotic critical points may be described by
non-Abelian gauge theories [45,46].
Despite the tremendous recent progress in the field,

properties of even the simplest fermionic quantum critical
points are very difficult to compute at the same level of
accuracy as their bosonic counterparts [47]. Focusing on
Gross-Neveu models, the critical points are often charac-
terized by the parameterNf (the number of four-component
Dirac fermion flavors) and the symmetry-breaking pattern
[which are usually classified as either Z2 (Ising), Uð1Þ
(XY), or SUð2Þ (Heisenberg)]. In some studies, the break-
ing of SUð2Þ × SUð2Þ symmetry has also been considered
[8,13]. For completeness, in the Appendix we discuss the
simplest three universality classes from a Hamiltonian
perspective and compile some of the critical exponents
obtained so far with Nf ¼ 1, 2 in Table IV. As can be seen
from the table, consistency between analytic results (using
techniques like the ϵ expansions, large-N expansions,
functional RG, and the bootstrap approach) and quantum
Monte Carlo (QMC) results (using lattice formulations) is
visible only for the Nf ¼ 1 chiral-Ising universality. Even
among the QMC results, there is often a lot of spread.
Because of limitations of convergence and difficulties to go
to higher orders in the expansion, continuum calculations
cannot easily be improved beyond what is currently
available. Similarly, errors in Monte Carlo calculations
arise due to the small lattice sizes used in the calculations.
In fact, most calculations have been performed on rather
small lattice sizes, with the total number of spatial lattice
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Spin and charge dynamics of the ferromagnetic and antiferromagnetic
two-dimensional half-filled Kondo lattice model

S. Capponi and F. F. Assaad
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We present a detailed numerical study of ground state and finite temperature spin and charge dynamics of
the two-dimensional Kondo lattice model with hopping t and exchange J. Our numerical results stem from
auxiliary field quantum Monte Carlo simulations formulated in such a way that the sign problem is absent at
half-band filling thus allowing us to reach lattice sizes up to 12!12. At T"0 and antiferromagnetic couplings
J#0 the competition between the Ruderman-Kittel-Kasuya-Yosida interaction and the Kondo effect triggers a
quantum phase transition between antiferromagnetically ordered and magnetically disordered insulators: Jc /t
"1.45$0.05. At J%0 the system remains an antiferromagnetically ordered insulator and irrespective of the
sign of J, the quasiparticle gap scales as !J!. The dynamical spin structure factor S(q! ,#) evolves smoothly
from its strong-coupling form with spin gap at q! "($ ,$) to a spin-wave form. For J#0, the single-particle
spectral function A(k! ,#) shows a dispersion relation following that of hybridized bands as obtained in the
noninteracting periodic Anderson model. In the ordered phase this feature is supplemented by shadows, thus
allowing an interpretation in terms of the coexistence of Kondo screening and magnetic ordering. In contrast,
at J%0 the single-particle dispersion relation follows that of noninteracting electrons in a staggered external
magnetic field. At finite temperatures spin TS and charge TC scales are defined by locating the maximum in the
charge and spin uniform susceptibilities. For weak to intermediate couplings, TS marks the onset of antiferro-
magnetic fluctuations—as observed by a growth of the staggered spin susceptibility—and follows a J2 law. At
strong couplings TS scales as J. On the other hand TC scales as J both in the weak- and strong-coupling regime.
At and slightly below TC we observe !i" the onset of screening of the magnetic impurities, !ii" a rise in the
resistivity as a function of decreasing temperature, !iii" a dip in the integrated density of states at the Fermi
energy, and finally !iv" the occurrence of hybridized bands in A(k! ,#). It is shown that in the weak-coupling
limit, the charge gap of order J is formed only at TS and is hence of magnetic origin. The specific heat shows
a two-peak structure. The low-temperature peak follows TS and is hence of magnetic origin. Our results are
compared to various mean-field theories.

DOI: 10.1103/PhysRevB.63.155114 PACS number!s": 71.27.&a, 71.10.Fd

I. INTRODUCTION

The Kondo lattice model !KLM" as well as the periodic
Anderson model !PAM" are the prototype Hamiltonians to
describe heavy fermion materials1 and Kondo insulators.2
The physics under investigation is that of a lattice of mag-
netic impurities embedded in a metallic host. The symmetric
PAM reads

HPAM"%
k! ,&

'!k! "ck! ,&
† ck! ,&'V%

i! ,&
!c i! ,&
† f i! ,&& f i! ,&

† c i! ,&"

&Uf%
i!

!n i! ,↑
f

'1/2"!n i! ,↓
f

'1/2". !1"

The unit cell, denoted by i! , contains an extended and a lo-
calized orbital. The fermionic operators ck! ,&

† ( f k! ,&
† ) create

electrons on extended !localized" orbitals with wave-vector k!
and z component of spin & . The overlap between extended
orbitals generates a conduction band with dispersion relation
'(k! ). There is a hybridization matrix element V between
both orbitals in the unit cell and the Coulomb repulsion—
modeled by a Hubbard Uf—is taken into account on the

localized orbitals. In the limit of large Uf , charge fluctua-
tions on the localized orbitals are suppressed and the PAM
maps onto the KLM:3

HKLM"%
k! ,&

'!k! "ck! ,&
† ck! ,&&J%

i!
S! i!
c•S! i!f . !2"

Here, S! i!
c
" 1

2 %s ,s!c i! ,s
† &! s ,s!c i! ,s! , where &! are the Pauli s

"1/2 matrices. A similar definition holds for S! i!
f . A magnetic

energy scale J"8V2/U emerges and there is a constraint of
one electron per localized orbital. Although this constraint
forbids charge fluctuations on the localized orbitals, those
fluctuations are implicitly taken into account leading to the
above form and sign of the exchange interaction. On the
other hand, when charge fluctuations on the localized orbitals
are absent, the exchange interaction follows from Hund’s
rule and is ferromagnetic. The ferromagnetic KLM has at-
tracted much attention in conjunction with manganites.4 In
this paper we will consider both ferromagnetic and antifer-
romagnetic exchange interactions with emphasis on the anti-
ferromagnetic case.
The physics of the single impurity Anderson and Kondo

models at J/t#0 is well understood.5 In the temperature
range J%T%U , charge is localized on the f orbital, but the
spin degrees of freedom are essentially free, thus leading to a
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10)       Dzyaloshinskii-Moriya 
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Quantum Monte Carlo simulation of generalized Kitaev models
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Frustrated spin systems generically suffer from the negative sign problem inherent in Monte Carlo methods.
Since the severity of this problem is formulation dependent, optimization strategies can be put forward. We
introduce a phase pinning approach in the realm of the auxiliary field quantum Monte Carlo algorithm. If we can
find an antiunitary operator that commutes with the one-body Hamiltonian coupled to the auxiliary field, then the
phase of the action is pinned to 0 and π . For generalized Kitaev models, we can successfully apply this strategy
and observe a remarkable improvement of the average sign. We use this method to study the thermodynamical
and dynamical properties of the Kitaev-Heisenberg model down to temperatures corresponding to half of the
exchange coupling constant. Our dynamical data reveal finite temperature properties of ordered and spin-liquid
phases inherent in this model.

DOI: 10.1103/PhysRevB.104.L081106

Introduction. Local moment formation and spin-orbit en-
tanglement is at the origin of many fascinating states of matter
that are realized in various materials [1]. The family of lay-
ered iridates and α-RuCl3 are Mott insulators where strong
spin-orbit coupling leads to bond selective spin couplings on
an underlying honeycomb lattice [2–4]. This class of mate-
rials is believed to be proximate to the Kitaev spin liquid
characterized by emergent Majorana fermions and Z2 fluxes
[5]. In particular, α-RuCl3 exhibits zigzag spin ordering, but
proximity to the Kitaev spin liquid suggests that high energy
features of this material are described by Majorana fermions
[6,7]. These exotic particles will hence only show up in ther-
modynamical and dynamical properties in an intermediate
temperature range bounded by the ordering temperature and
the coherence scale of the Majorana fermions.

The aim of this Letter is to provide a quantum Monte
Carlo (QMC) algorithm that allows one to study a generalized
Kitaev model in a temperature range that overlaps with the
aforementioned energy scales. For concreteness, we consider

Ĥ =
∑

i, j,α,β

$
α,β
i, j Ŝα

i Ŝβ
j +

∑

i, j

Ji, j Ŝi · Ŝ j . (1)

Here, i, j run over sites of the honeycomb lattice and Ŝα
i is

a spin-1/2 degree of freedom. For i, j defining a nearest-
neighbor δ bond [see Fig. 1(a)] and $

α,β
δ = 2Kδα,βδδ,α , the

first term reduces to the Kitaev model [5]. Although re-
dundant, it is convenient for the simulations to include an
SU(2)-symmetric Heisenberg term with nonfrustrating ex-
change couplings Ji, j .

Hamiltonians of the form in Eq. (1) suffer from the neg-
ative sign problem such that no exact QMC simulations
have been carried out to date. Numerical research for this
class of Hamiltonians has made use of exact diagonalization
[3,8–13], functional renormalization group [14,15], density-

matrix renormalization group [16–18], the thermal pure
quantum state method [10,13], and the tensor network method
[17–20]. The negative sign problem in the QMC approach is
formulation dependent and hence can, in principle, be reduced
so as to reach relevant energy scales. In fact, this can be seen
as an optimization problem over the space of possible path
integral formulations [21,22]. Here, we adopt a symmetry
based strategy, that pins the phase of the action to 0 and π .
We will show that this strategy greatly reduces the severity
of the negative sign problem and that it opens a window of
temperatures where the QMC works efficiently and that is
relevant to experiments.

Phase pinning approach. The auxiliary field QMC
(AFQMC) algorithm [23–25] is based on a Hubbard-
Stratonovich decoupling of the interaction term. After this
step, the partition function can generically be written as

Z =
∫

d&(x, τ )e−S[&(x,τ )], (2)

with

S(&) = S0(&) − log Tr
[
T e−

∫ β

0 dτ
∑

x,y ĉ†
x hx,y (τ )ĉy

]
. (3)

Here, & corresponds to the Hubbard-Stratonovich field, ĉ†
x are

fermion operators, x runs over the single particle states, S0 is a
real bosonic action, and hx,y(τ ) is a & and τ dependent matrix.
The trace over the fermion degrees of freedom is generically
complex such that the phase Im S ∈ [0, 2π ]. The Monte Carlo
importance sampling of the field & is then carried out ac-
cording to weight |e−S(&)| and the average sign corresponds
to the reweighting factor 〈sign〉 =

∫
d&e−S(&)/

∫
d&|e−S(&)|.

Generically, the average sign scales as e−(βV with V the vol-
ume of the system and ( a formulation dependent constant.
Since the errors on the average sign have to be smaller than
the mean value, the computational cost required to resolve
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11)   Define  your   own   problem


